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Abstract

In attempts to discover exciting new phenomena, it is useful to com-
pare our data with (at least) two different hypotheses. These are H0, the
null hypothesis, corresponding to just known physics and nothing new;
and H1, a specific version of new physics, perhaps involving free param-
eters, such as the mass of a new particle. Methods of performing this
comparison, with a view to claiming a discovery, are reviewed.

1 Introduction

It is exciting to make a new discovery. In Particle Physics, current knowledge is
encapsulated in the Standard Model (SM), but there are plenty of candidates for
new physics e.g. supersymmetry, extra dimensions, quark and/or lepton sub-
structure, etc. There is also the possibility of discovering something completely
unexpected.

From a statistical viewpoint, there are two types of approach that can be
made towards claiming a discovery. The first is to test whether our data is
consistent with the null hypothesis of there being nothing new (in our case, H0

is the SM1). This is typically called “Goodness of Fit”. The second consists
of comparing the data with both H0 and with a specific alternative H1; this is
“Hypothesis Testing”. In this article we concentrate on the latter, although Sec-
tion 4 contains a brief comparison of the two approaches. Apart from statistical
issues, there are also (and usually more importantly) physics considerations, as
discussed briefly in Section 2.

In the context of trying to make a discovery, Hypothesis Testing is essentially
applied to the end-result of the experiment. It can also be used earlier in the
analysis chain, where we are trying to select wanted signal events (which is now
H0) while rejecting unwanted background (H1). The desirable features for a
Hypothesis Testing procedure may be different for these two situations. This
is discussed in Sections 2 and 3. In this note, we concentrate largely on the
former.

Any Goodness of Fit or Hypothesis Testing situation provides a number on
which a decision must be based. We then still have to make a decision about

1Although the Higgs boson is part of the SM, as at the time of writing it has not yet been
discovered. For the purpose of this discussion, we classify Higgs searches as being part of new
physics. i.e. we do not include H0 in H0.



what action to take. For Goodness of Fit, this is whether to reject or accept H0;
in Hypothesis Testing, it is whether to prefer one of the hypotheses to the other,
or perhaps to make no choice. Section 5 discusses p-values (the probability of
obtaining a result as extreme as ours, or more so), both for Goodness of Fit and
for Hypothesis Testing situations.

In either situation, our decision may be incorrect. This may consist in re-
jecting H0 when it is true; these are “Errors of the first kind”. “Errors of the
second kind” are when H0 is false, but we accept it. For hypothesis tests where
we allow ‘no decision’ as an outcome, a measure of the efficiency of the test is
also desirable (see Section 6.2).

Section 6 considers p-values and likelihood ratios, while the much-maligned
CLs method is discussed in Section 7. Various Bayesian-based methods are
described in Section 8, and some comparisons of the various approaches are to
be found in Section 9. Finally different ways of incorporating systematics are
mentioned (see Section 10); this topic is likely to be very important at new
accelerators running at higher energies, where backgrounds and detectors may
be poorly understood.

It is always crucial to remember that the statistical technique we are us-
ing will be completely insensitive to any undetected faults in our analysis. For
example, the theory or software for estimating some background may provide
a poor description of reality; our understanding of the detector may be inad-
equate; etc. Another important point is that the statistical method provides
some numerical output only to the particular question being addressed. Thus
a poor Goodness of Fit statistic could be due to many large random fluctua-
tions or to some underestimated systematic, rather than to the presence of new
physics. In a similar vein, consistency between the data and the alternative H1

is not necessarily implied by a large likelihood ratio between H1 and H0; it is
merely that H1 is better than H0 for describing the data.

Selecting between alternative hypotheses is a subject with a vast statistical
literature; refs. [1] - [3] are just a very small sample of what is available. A
variety of papers related to discovery issues can be found in ref.[4]. Demortier[5]
has recently produced recommendations for these issues.

2 Physics Considerations

When we are considering claiming a new discovery, we want to ensure that the
apparent evidence is very unlikely to be due to a statistical fluctuation, or to
a mistaken analysis. This note deals predominantly with the statistical issues,
but here we make a few remarks relevant to the physics.

If we are about to perform a Goodness of Fit test looking for any new
phenomenon, we still have to decide which of the infinity of possible distributions
of variables to examine. For example, mass plots with possible interesting peaks
in them are likely to be more interesting than the instantaneous accelerator
beam luminosity for the observed events. This already involves an implicit
specification of the sort of new physics we might hope to find. In the other
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situation of testing a specific alternative hypothesis (Hypothesis Testing), it
should be clearer which are the relevant variables which might be most sensitive
to our alternative hypothesis.

In either case, we still have to ensure that any apparently statistically un-
likely occurrence for the null hypothesis is not produced by some bug. This
could be due to one or more events accidentally appearing several times in the
analysis; an incorrect statistical procedure, perhaps failing to recognise that the
method was not blind, and hence the physicist could (subconsciously) work to
enhance the effect by some (in)judicious selections; a poor description of the
expected backgrounds in the selected event sample; not allowing for uncertain-
ties in parameters associated with the simulation of H0; incorrect description of
the detector effects; etc. Thus an underestimate of systematics associated with
the knowledge of parton distributions used to calculate expectations from H0

for jet production at large pT could lead to apparently statistically significant
deviations in the data, which could be misinterpreted as a sign of the discovery
of quark substructure.

If, in so far as is feasible, the possibility of a mistaken analysis is excluded,
then it is important to consider whether further investigations can be performed
on the possible discovery. For example, it may be possible to check background
estimates in channels which are like the one used for the hoped-for discovery,
but which should not contain the signal. Another check could be that if the sus-
pected signal involved W bosons decaying to a muon or electron plus a neutrino,
it might be possible to find confirmatory evidence from W hadronic decays.

As pointed out later, in deciding to make some claim for the result of the
experiment (e.g. “We have excluded the SM Higgs boson for masses up to 750
GeV”, or “Our results show conclusive existence of extra dimensions”), it is
necessary to adopt some rule for using the value of the statistic (i.e. the p-
value, likelihood ratio, etc.) for making a decision. In deciding how strong the
evidence should be, a convention in Particle Physics has been that a p-value
should correspond to a 5σ upper tail of a Gaussian, equivalent to a probability
of 3 ∗ 10−7 for a statistical fluctuation. Bob Cousins has argued strongly that,
rather than adopting a single standard, the degree of surprise of the result
should be taken into account. Thus if we were testing for the violation of the
conservation of energy, we should require more than 5σ. In contrast, if we are
looking for evidence for the production of single top quarks (rather than their
observed pair production), we should be satisfied with less than 5σ since the top
quark exists, and its mass and its expected production rate are known; indeed
it would be surprising if the process did not exist. This allowance for the degree
of unexpectedness of the result is essentially (or explicitly) taking into account
our Bayesian priors for the various hypotheses.

Statisticians are always surprised to hear that anyone requires a level of 5σ
before claiming a discovery. This is not only because they regard this as ex-
tremely stringent, but also because they find it hard to believe that pdfs (prob-
ability density functions) are known accurately enough, especially in the tails
of their distributions, to make such numbers meaningful. This may be a very
relevant comment, especially concerning nuisance parameters, whose estimation
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is often more vague than for statistical errors.
Although the discovery threshold (i.e rejection of H0) tends to be set very

stringently, exclusion of H1 is usually taken at the 95% level. This is because
claiming an exclusion region slightly larger than it ought to be is regarded as
not as serious as having made a false discovery claim. Also, as expressed by
Cowan[6], “If you have lost your car keys and have looked hard in the kitchen
so you are 95% certain they are not there, it is sensible to continue the search
elsewhere.”

An alternative use of hypothesis testing is at an earlier stage of most analyses,
where an attempt is made to select wanted events for further analysis, while
having a strong rejection of the usually more copious background. Here the
relevant hypotheses are ‘signal’ as H0 and ‘background’ as H1. In this case,
there is no option of not making a decision; the events are either accepted or
rejected. A multivariate method (e.g. boosted decision trees, neural networks,
support vector machines) is usually adopted for this. In order to achieve a good
efficiency for signal (small error rate of the first kind), it is almost inevitable
that there will be some level of backgound among the accepted events (errors
of the second kind). Unlike the situation where our hypothesis testing was for
the result of the experiment, this is no longer a disaster, but corresponds to
a situation we can live with, provided we can make a reliable estimate of the
level of background and correctly allow for it in the analysis. This will inevitably
increase the statistical error on the result of the experiment as compared with an
ideal situation with no background. The dangers are that this will be dominated
by systematic errors associated with uncertainties in the background; or, even
worse, that these systematics will be underestimated.

Multivariate methods usually allow the signal acceptance efficiency to be
varied; thus with neural networks, the acceptance cut on the neural network
output can be altered. As the efficiency is increased, the background generally
rises, so some compromise is needed in deciding where to make the cut. This
is usually done by optimising the expected accuracy of the result (although
some approaches build this optimisation into the multivariate method itself).
Estimating the background is generally much more difficult than obtaining the
signal efficiency, because the background could come from many sources, and it
is often the hard-to-simulate tails of distributions that creep into the acceptance
region.

That is almost all for Physics; the rest of this note deals predominantly with
statistical issues.

3 Examples of Hypotheses

A possible example of a hypothesis could be that the value of a parameter takes
on a special value; for example, that the magnetic moment of the muon (µµ)
should be as predicted by SM. Then it is possible to test this hypothesis by
establishing a confidence or Bayesian credible range for µµ at some specified
level, and seeing if this includes the predicted value. In general, testing whether
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the distribution of the data agrees with the model is a better way of performing
hypothesis testing, as it is possible to obtain seemingly acceptable parameter
values even when the data do not fit the model well.

In some cases, one or both of our hypotheses may be completely specified,
but more commonly the hypotheses may involve free parameters. The former are
termed ‘simple hypotheses’, while the latter are ‘composite’. Such free parame-
ters could be experimental, such as the correction factor for the energy scale of
our calorimeters; or they could be theoretical, like the mass of a particle we are
trying to discover. Even though the latter is a quantity of physical interest, it is
regarded as a ‘nuisance parameter’ for the specific hypothesis test we are trying
to perform. It is of course necessary to take into account the uncertain values
of nuisance parameters in performing statistical tests. In particular, performing
Monte Carlo simulations for producing the expected distributions for our test
statistic is more complicated when there are nuisance parameters, and frequen-
tist and Bayesians have different approaches on how to do this. The former
would generate several different sets of simulated data, each with fixed values
of the nuisance parameters. In contrast, Bayesians might generate a single sim-
ulation, in which the nuisance parameters are varied randomly from event to
event according to the assumed (possibly correlated) priors for the parameters.

Another categorisation of our hypotheses H0 and H1 is whether they are
‘nested’. If so, the hypothesis with more free parameters (usually H1) includes
the other hypothesis as a special example for specific values of the parameters.
Thus if we are fitting some data on the length L of an object as a function of
temperature T, we might try a straight line as H0 (L = a + bT ) or a quadratic
as H1 (L = a + bT + cT 2); then H1 reduces to H0 if c = 0.

In contrast we could try to fit the data by the same H0 but with H1 as
an exponential L = L0e

dT , where L0 and d are parameters. Then there are
no values of L0 and d (or for a and b) for which the two hypotheses become
identical. Thus H0 and the new H1 are not nested.

As implied above, when dealing with nested hypotheses, it is usual to take
as H0 the one with fewer parameters. e.g. a smooth background as opposed to
‘background plus peak’. In particle physics situations, where the SM is being
compared with new physics, the former is the usual H0; this is likely to coincide
with the convention of fewer parameters.

The reason for not choosing new physics as H0 (especially in a p-value ori-
entated method) is that with data that is not decisive in distinguishing the
hypotheses, we would end up stating that we had not rejected the new physics
hypothesis. While this is a true statement, it is in danger of being confused
with the idea that our data supports the idea of new physics. With the SM as
the null hypothesis, we would merely say that we had not ruled out the SM.
Bayesian methods tend to deal more symmetrically with the two hypotheses.

Demortier has pointed out another reason for selecting SM as H0. In the
standard frequentist approach, we choose the value of α in advance, and this
controls errors of the first kind. i.e. false rejections of H0. The rate for errors of
the second kind (failure to reject H0 when the alternative is true) then depends
on how well the hypotheses’ pdfs are separated. Because in this context errors of
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the first kind are usually regarded as more important, this too argues in favour
of having SM as H0.

4 Comparison of “Goodness of Fit” with “Hy-
pothesis Testing”

Typical Goodness of Fit tests are χ2, Kolmogorov-Smirnov and its variants,
etc., which result in p-values. Methods for performing Hypothesis Testing in-
clude likelihood ratio, difference in χ2, p-values, Bayes factor, Bayes information
criterion, etc. The advantage of a goodness of fit test is that it looks for discrep-
ancies between the data and H0, without the need to specify any alternative.
Thus in principle, any deviation from our null hypothesis can be detected, and
we can be sensitive to discovering surprising forms of new physics. However,
if we know what we are looking for (e.g. a leptoquark of specific mass, etc.),
a comparison of the two hypotheses is likely to be more sensitive to the new
phenomenon. On the other hand, this hypothesis comparison may fail to alert
us to the fact that the data contains some other type of new physics; having H1

as a leptoquark may not easily allow us to discover a 4th generation top quark.
Even Goodness of Fit tests, however, are not completely free of the concept

of an alternative hypothesis. For example, the choice of test statistic depends
somewhat on what we expect the other possibilities to be; different statistics are
likely to have different sensitivities for ruling out H0. Similarly, in situations
where we have a single statistic, we might regard a large value, or a small one
or either as a sign of a discrepancy. Thus if we thought that the production of
a new particle was a likely possibility, an excess of events could be significant.
In searching for neutrino oscillations, a deficit might be interesting; while for
a general search for new physics any discrepancy could be noteworthy.

Another example is of using χ2 to test whether a student has invented some
experimental results, rather than actually taking the measurements. Usually
H0 is rejected when the value of χ2 is large, but in this case it is a very small
value that would be suspicious2.

5 p-values

For our null hypotheses, H0, we construct some statistic t; one example could be
simply the observed number of events in some pre-defined region. The expected
distribution of t under the null hypothesis is f0(t). Then for a given observed
value tobs, p is the fractional area in the tail of f0(t) for t greater than or equal
to tobs. For definiteness we consider the single-sided upper tail (corresponding
to other hypotheses tending to yield larger values of tobs), but as mentioned
above lower or 2-sided tails could be appropriate in other cases.

2Alternatively, if we thought the possibly-cheating student was very bright, we might see
whether the value of χ2 was too close to the number of degrees of freedom.
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For the common case of a Poisson distributed number of events, the Pois-
son approximates to a Gaussian distribution for large values of the Poisson
parameter µ. It is worth noting, however, that this approximation is poorer
in the tails than for the bulk of the distribution. Thus the Poisson probability
P (tobs = 50 | µ = 100) = 0.12 ∗ 10−7 as compared with P (tobs = 150 | µ =
100) = 6.5∗10−7, whereas the Gaussian approximation would suggest they were
equal.

When the data are summarised by more than one variable, the definition of
what is ‘more extreme than the observed values’ may well not be unique. It
is convenient if the data can be compactified into a single variable (e.g. the
output from a neural network; an ‘optimum variable’; etc.) Sometimes a like-
lihood ratio is used; this is the likelihood of the observed data, assuming some
specific alternative hypothesis, as compared with its likelihood assuming H0.
This statistic no longer depends solely on H0, but p0 will still be the probability
of observing an extreme value of the statistic, assuming H0.

Section 10 lists ways of calculating p-values in the presence of systematics.

5.1 What p is not

It is extremely important to realise that a p-value is the probability of observing
data like that observed or more extreme, assuming the hypothesis is correct. It
is not the probability of the hypothesis being true, given the data. These are
not the same. For example, the probability of being pregnant, assuming you are
female, is very much smaller than the probability of being female, given that
you are pregnant.

A small p-value is an indication that the data are not very consistent with
the hypothesis. Apart from the possibility that the cause of the discrepancy
is new physics, it could be due to an unlikely statistical fluctuation, an incor-
rect implementation of the hypothesis being tested, an inaccurate allowance for
detector effects, etc.

As more and more data is acquired, it becomes more likely that a small (and
not physically significant) deviation from the tested null hypothesis could result
in the p0 becoming small as the data become sensitive to the small deviation.
For example, a set of particle decays may be expected to have an exponential
decay, but there might be a small background characterised by decays at very
short times, and which is not allowed for in the analysis. A small amount of
data might be insensitive to this background, whereas a large amount of data
might give a very small p-value for a test of exponential decay, even though the
background is fairly insignificant. The possibility of a statistically significant
but physically unimportant deviation has been mentioned by Cox[7].

Many of the negative comments about p-values are based on the ease of
misinterpreting p-values. Thus it is possible to find statements that of all ex-
periments quoting p-values below 5%, and which thus reject H0, many more
than 5% are wrong (i.e H0 is actually true). In fact, the expected fraction of
these experiments for which H0 is true depends on other factors, and could
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take on any value between zero and unity, without affecting the validity of the
p-value calculation.

5.2 p-values for two hypotheses

With two hypotheses H0 and H1, we can define a p-value for each of them. We
adopt the convention that H1 results in larger values for the statistic t than
does H0. Then p0 is defined as the upper tail of f0(t), the pdf for observing a
measured value t when H0 is true. It is usual to define p1 by the area in the
lower tail of f1(t) (i.e towards the H0 distribution – see Fig. 1).

As explained earlier, there are now several situations possible (see Table 1):

• p1 is small, but p0 acceptable. Then we accept H0 and reject H1. As
applied to the result of the experiment, this means that we exclude the
alternative hypothesis.

• p0 is very small, and p1 acceptable. Then we accept H1 and reject H0.
This corresponds to claiming a discovery.

• Both p0 and p1 are acceptable. The data are compatible with both hy-
potheses, and for the case where the hypotheses relate to the result of the
experiment, we make no decision. Alternatively in using the test as an
event selector, the event could be assigned to one of the hypotheses on the
basis, for example, of the larger p-value; it could be kept as an example of
both hypotheses; or rejected as ambiguous.

• Both p0 and p1 are small. The choice of decision is not obvious, but
basically both hypotheses should be rejected.

Table 1: Decisions based on p0 and p1.

p0 p1 Decision for conclusion Decision for event selector If H0 true
Very small O.K. Discovery Accept H1 Error of 1st kind

O.K. Small Exclude H1 Accept H0 Correct decision
O.K. O.K. No decision Choose by larger p? Loss of efficiency

Very small Small ? Reject event ?

A difference compared with a Goodness of Fit test based just on p0 is that
we now have the possibility of ‘no choice’. As a consequence, the categories of
‘errors of the first or second kind’ are no longer sufficient to characterise the
performance of the test. A method could have very low error rates, but at the
price of not making a decision for the majority of cases. Table 2 shows the
probabilities of the test statistic t falling in the different regions of fig. 1, for
either H0 or H1 being true. We see that the probability of falsely excluding H1
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when it is true is less than β(α). This is a result of the protection built in by the
‘no decision’ region. The price to pay for this protection is that the probability
of excluding H1 when H0 is true is reduced. For given pdfs of H0 and H1, these
probabilities can be determined, for example by simulation.

Table 2: Probabilities for the data statistic t falling in the different regions of
fig. 1, when the pdfs of H0 and H1 overlap; this corresponds to the top 3 lines
of Table 1. (The probabilities are slightly different when the pdfs are very well
separated, and the data can be such that both p0 and p1 are small - see the
bottom line of Table 1.) α is the very small probability cut-off imposed for
rejecting H0, and 1 − β(α) is the power for accepting H1 when it is true. The
procedure is characterised by α, β, and the efficiencies ε0 and ε1 for making a
decision.

Data region Exclusion of H1 No decision Discovery of H1

H0 true Less than 1− α 1− ε0 α
H1 true Less than β(α) 1− ε1 1− β(α)

The procedure as just described does not implement the protection provided
by the CLs method (see Section 7) against the possibility of rejecting H1 when
the pdfs show the analysis has little or no sensitivity to distinguishing between
H0 and H1. This can be incorporated in the procedure if desired.

There are different ways in which the above procedures are implemented.
Some of these are:

• A simple approach would impose cuts on p0 and p1. These might typically
be 3 ∗ 10−7 and 0.05 respectively (See fig. 2 (b))

• The CLs method is used only for possible exclusion of H1. It thus refers
to the first and third items in the previous list. The decision line is that
H1 is rejected if p1/(1−p0) is less than some pre-assigned value, like 0.05.

• In comparing separate fits to a histogram of the same data, the χ2 val-
ues for the two fits can be evaluated. In selecting between the hypothe-
ses, the difference in χ2 values is more sensitive than the individual
values[18]. The no-decision region in now reduced as compared with the
simple method of using the tail probabilities of the individual χ2 values
(see Section 9.1).

• Demortier has described several conditional frequentist approaches[8].
These calculate p-values, subject to the conditioning statistic, and use
it in making a decision concerning the two hypotheses. These methods
sometimes also have a Bayesian interpretation. As far as I am aware, they
have not yet been employed in Particle Physics analyses.

Fig 2 illustrates the (p0, p1) plot for defining various decision regions.
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6 p-values, likelihood ratios, and all that

Some elementary ideas concerning p-values were discussed in Section 5. Here
we discuss them further, especially in situations where we are comparing two
(or more) hypotheses.

6.1 α, β and power

Fig. 1 shows the probability densities for obtaining a value t of a data statistic,
for hypotheses H0 and H1. For a specific value tobs, the p-values p0 and p1

correspond to the upper tail area above tobs for H0, and below tobs for H1,
respectively.3 Then tcrit is the critical value of t such that its p0 value is equal
to a preset level α for rejecting the null hypothesis.

Figure 1: Schematic diagram of probability density functions for the observable
t for two hypotheses H0 and H1. For a particular value tobs, the p-values p0

and p1 are conventionally defined as the single-tail areas in the direction of the
other hypothesis. (This definition is not always unique.) For rejecting H0 (i.e.
‘Discovery’), a typical choice is that p0 should be smaller than 3 ∗ 10−7, while
exclusion of H1 might require p1 to be less than 0.05. In the diagrams in this
note, they are shown at larger values simply for clarity. The pre-set level α for
rejecting H0 determines the critical value tcrit for the observable t. Then β is
the p1-value when t = tcrit, and the power of the test is 1 − β (see Section
6.1).

3If t is a discrete variable, such as a number of events, then ‘above’ is replaced by ‘greater
than or equal to’, and correspondingly for ‘below’.
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Having chosen a value for α, then β is defined as the value of p1 when
t = tcrit. Clearly it depends on the pdf for H1. The power of the test is
defined as 1 − β, and is the probability of rejecting H0, assuming that H1 is
true. Its value depends on the separation of the pdfs for H0 and H1.

The above discussion implicitly assumes that H0 and H1 are simple hy-
potheses i.e. do not involve arbitrary parameters. While typically H0 is the
SM and may not involve arbitrary parameters, H1 may do (e.g. the mass of
the SM Higgs boson; some supersymmetry parameters; neutrino mixing angles;
etc.) Then we can regard the pdf for H1 as being for some specific values of
the parameters, and we could produce a plot of the power of the statistical test
for H0 as a function of these parameters. In situations where H1 reduces to H0

for particular values of the parameters (e.g. the mass of the SM Higgs is very
large), the ideal situation is where the power equals α when H1 reduces to H0,
and rapidly rises towards unity for other values.

6.2 Likelihood ratio

Rather than calculating p-values for the various hypotheses, we could use the
pdfs of Fig. 1 to evaluate their likelihoods L0 and L1. While p-values use tail
areas beyond the observed statistic, the likelihood is simply the height of the
pdf at tobs.

In comparing two simple hypotheses, the Neyman–Pearson theorem deals
with the best way of choosing a region in data space for accepting H0 at a given
probability level, while minimising the contamination from H1. It says that the
region should be such as to contain the largest values of L0/L1. The theorem
applies only to comparisons of two hypotheses, both of which are simple. How-
ever, also in other situations the likelihood ratio may well be a suitable statistic
for summarising the data and for helping choose among hypotheses. In general,
it will be necessary to generate the expected distributions of the likelihood ratio
according to the hypotheses H0 and H1, in order to make some deduction based
on the observed likelihood ratio; for composite hypotheses there are of course
the complications caused by the nuisance parameters. The decision process may
well be based on the p-values p0 and p1 for the two hypotheses (see fig. 2). In
that case, the procedure can be regarded as either a likelihood ratio approach,
with the p-values simply providing a way of making a decision from the like-
lihood ratio; or as a p-value method, with the likelihood ratio merely being a
convenient statistic.
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Figure 2: Plots of p0 versus p1. for some data x compared with two hypotheses
H0 and H1. (a) The standard method of simply rejecting the null hypothesis
if p0 is below a specified level leads to an acceptance region to the right of the
vertical dashed line. (b) The minimax approach accepts the hypothesis with
the larger p-value. (c) With each hypothesis rejected if its p-value is below a
specified value, the plot is divided into four regions. The largest rectangle is
where both p-values are large and it may be decided to make no decision. The
rectangle near the origin is where both p-values are small, and maybe both
hypotheses are rejected. In the remaining two rectangles, one hypothesis is
preferred over the other. For pdfs of a given separation, the (p0, p1) values
lie on a curve; the ones shown are for Gaussian pdfs. As the separation of
the pdfs increases, the curve moves towards the axes. The Punzi definition of
sensitivity of a search corresponds to having enough data (equivalent to a large
separation of the pdfs) such that the curve does not enter the ‘no decision’
region. The CLs procedure for excluding H1 uses the dashed diagonal line,
rather than the standard horizontal one. (d) Contours of constant Bayes factor
B01 for Gaussian pdfs. The upper right region is inaccessible; the diagonal line
from (0,1) to (1,0) corresponds to the pdfs lying on top of each other i.e. no
sensitivity. The diagonal through the origin is when xobs is mid-way between
the two pdfs. With larger separation of the Gaussian pdfs and for constant p0

the Bayes factor B01 increases.
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For a Gaussian pdf , as the value of tobs rises more and more above the mean
value, p0 and the likelihood both decrease monotonically. Such a simple rela-
tionship does not always apply. For example, Fig. 3(a) shows a flat pdf ; the
value of the likelihood is independent of the value of t within its physically al-
lowed range, and while the tobs shown has a small p-value, its likelihood is not
unusual. In contrast, the pdf of Fig. 3(b) has a dip in the middle, but tobs

corresponds to a large p-value; this suggests that it is consistent with the hy-
pothesis while the pdf and the likelihood show that the tobs cannot be produced
if the hypothesis is true. A third example is a comparison of two hypotheses
whose pdf ’s are both Gaussians centred at zero, but with width 1 for H0 and 2
for H1. For any positive t, the one-sided p-value for H0 is always smaller than
that for H1, but for t less than 1.67 the likelihood ratio L0/L1 is greater than
unity. A comparison of the likelihood ratio and the difference in χ2s is made 3
paragraphs below.

Figure 3: Examples of pdfs for which p-values and likelihoods may give rise to
different conclusions. The flat distribution in (a) is such that the likelihood is
independent of the observable t, and so even though tobs has a small p-value,
its likelihood is the same as for any other allowed t. In (b), if tobs falls in the
dip in the middle of the pdf , the likelihood will be zero, while the p-value will
be close to 50%.

It is important to realise that the magnitude of the likelihood is not a mea-
sure of how well the data are consistent with the hypothesis[9]4. However, for

4A simple illustration of this is provided by the likelihoods for the Poisson parameter µ
when the observed number of events is µ. The likelihood for µ = 1 is 0.37, as compared with
0.08 for µ = 25, even though both are perfect fits.
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comparing a histogram with a theory, a binned likelihood ratio5 can be used.
It is the ratio of the likelihoods of the data for the hypothesis, and of the data
with the best possible theory which predicted exactly the observed numbers of
events in each bin[10]. For data more or less consistent with the theory, the
logarithm of this likelihood ratio is asymptotically approximately -0.5 times the
χ2 for the fit.

For the simple case of a Gaussian pdf 1/(
√

2πσ) exp(−0.5(t − tpred)2/σ2),
with observed value tobs, the logarithm of the likelihood is

log L = −0.5 ∗ (tobs − tpred)2/σ2 − log(σ)− 0.5 ∗ log(2π)
= −0.5 ∗ χ2 − log(σ)− 0.5 ∗ log(2π) (1)

where χ2 measures the degree of fit between tobs ± σ and tpred. Thus up to an
additive constant, the chi-squared and -2 times the log of the likelihood agree.
In the Baker and Cousins approach the likelihood is compared with its largest
possible value Lbest when tpred = tobs, in which case Lbest = − log(σ) − 0.5 ∗
log(2π). Then −2 ∗ log(L/Lbest) = χ2, as stated in the previous paragraph. For
non-Gaussian pdfs, the equality does not hold (but then (tobs− tpred)2/σ2 is not
distributed like χ2 anyway).

Now let us assume we are comparing the data with two different hypotheses,
H0 and H1, each described by Gaussians. The likelihood functions are

Li = 1/(
√

2πσi) exp(−0.5(t− ti)2/σ2
i ) (2)

and the likelihood ratio is now given by

−2 ∗ log(L0/L1) = χ2
0 − χ2

1 + log(σ0/σ1) (3)

Thus when the widths of the Gaussians for the two hypotheses are not equal,
there is an offset between −2 ∗ log(L0/L1) and the difference in χs for the two
fits. If these variables are being used to select between the two hypotheses, it
would be sensible to choose different cuts for them.

6.3 When neither H0 or H1 is true

It may well be that neither H0 nor H1 is true. With no more information
available, it is of course impossible to say what we expect for the distribution
of our test statistic t. On the plot of fig. 2(b), our data may fall in the small
rectangle next to the origin. It is certainly not true that a small value for p0

implies that H1 is correct, although for small enough p0, ruling out H0 is a
possibility.

David Cox[7] has drawn attention to the situation where H0 is nearly correct.
A small amount of data may well appear to be consistent with H0, but with
more data, the discrepancy may become apparent. Then p0 would be small (but
L0/L1 may well still favour H0 – see the second paragraph of Section 9.2 and

5It is to be noted that this likelihood ratio involves only a single hypothesis H0, while the
Neyman–Pearson theorem uses the likelihood ratio for two different hypotheses H0 and H1.
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fig. 2(d). Cox comments that the discrepancy could be significant statistically,
but insignificant physically.

With enough data, we may be able to include physically motivated correc-
tions to our naive H0.

7 CLs

The CLs method[11, 12] has been used at the LEP experiments at CERN (and
to some extent at the Fermilab Tevatron) in searches for new particles. When
evidence for such a particle is not found, the traditional frequentist approach
is to exclude its production if p1 is smaller than some preset level γ, which is
typically set at 5%. However, there is then a 5% probability that H1 could be
excluded, even if the experiment was such that the H0 and H1 pdf ’s lay on
top of each other i.e. there was no sensitivity to the production of the new
phenomenon. To protect against this, the decision to exclude H1 is based on
p1/(1−p0), known as CLs

6. It is thus the ratio of the left hand tails of the pdfs
for H1 and H0. Fig 2(c) shows a (p0, p1) region for which H1 is excluded by CLs.
The fact that it is clearly smaller than for the standard frequentist exclusion
region is the price one has to pay for the protection it provides against excluding
H1 when an experiment has no sensitivity to it. We regard it as conservative
frequentist.

It is interesting to note that the CLs exclusion line in fig. 2(c) for the
case of two Gaussians is identical to that obtained by a Bayesian procedure for
determining the upper limit on µ1 when the latter is restricted to positive values,
and with a uniform prior for µ1. In a similar manner, the standard frequentist
procedure agrees with the Bayesian upper limit when the restriction of µ1 being
positive is removed.

In principle, similar protection against discovery claims when the experiment
has no sensitivity could be employed, but it is deemed not to be necessary
because of the different levels used for discovery or exclusion of H1 (typically
3 ∗ 10−7 and 0.05 respectively).

8 Bayesian Methods

The Bayesian approach is more naturally suited to making statements about
what we believe about two (or more) hypotheses in the light of our data. This
contrasts with Goodness of Fit, which involves considering other possible data
outcomes, but focusses on just one hypothesis.

The complications of applying Bayesian methods to model selection in prac-
tice are due to the choices for appropriate priors. This is particularly so for
those parameters which occur in one model but not in the other(s).

6This stands for ‘confidence level of signal’, but it is a poor notation, as CLs is really the
ratio of p-values, which is itself not even a p-value, let alone a confidence level.

Confusion is also caused by apparently different definitions of CLs. These are related to
different conventions about which way p-values are defined.
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Loredo[13] and Trotta[14] have provided reviews of the application of Bayesian
techniques in Astrophysics and Cosmology, where their use is more common than
in Particle Physics.

8.1 Likelihood ratio

All Bayesian methods for choosing between hypotheses involve the likelihood
ratio. For simple hypotheses, this is just L0(x)/L1(x), where Li(x) = p(x|Hi),
the probability (density) for observing data x for the hypothesis Hi. The issue is
going to be how nuisance parameters7 µ are dealt with for non-simple hypothe-
ses. For the likelihood approach (as opposed to the Bayesian one, which also
require priors), it is usual to profile them i.e. Li now becomes pi(xi|Hi, µbest),
where µbest is the set of parameters which maximise L. The profile likelihood
approach is a popular method in Particle Physics for incorporating systematics
in parameter determination problems.

8.2 Bayesian posterior odds ratio

When there are no nuisance parameters involved, the posterior odds for Hi are
ppost(H0|x)/ppost(H1|x), where

ppost(Hi|x) = Li(x) πi, (4)

and πi is the assigned prior probability for hypothesis i. For example, the
hypothesis of there being a Higgs boson of mass 110 GeV might well be assigned
a small prior, in view of the exclusion limits from LEP.

With nuisance parameters, the posterior probabilities become

ppost(Hi|x) =
∫

Li(x|µ) πi(µ) πi dµ (5)

where πi(µ) is the joint prior for the nuisance parameters of hypothesis i. i.e.
we now have integrated over the nuisance parameters. This contrasts with
the likelihood method, where maximisation with respect to them is more
usual. Even with πi(µ) being a constant, integration and maximisation can
select different regions of parameter space. An example of this would be a
likelihood function that has a large narrow spike at small µ, and a broad but
lower enhancement at large µ.

In relation to all Bayesian methods, it is to be emphasised that the choice of a
constant prior, especially for multi-dimensional µ, is by no means obvious. Very
often, there are several possible choices of variable for the nuisance parameters,
with none of them being obviously more natural or appropriate that the others.
Thus a point in 2-dimensional space could be written as Cartesian (x, y) or
polar (r, θ); constant priors in the two sets of variables are different. Similarly

7For the purpose of model comparison, any parameters are considered as nuisance param-
eters, even if they are physically meaningful. e.g. the parameters of a straight line fit, the
mass of the Higgs boson, etc.
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in fitting data by a straight line y = a + b ∗ x, using a seemingly innocuous flat
prior for b = tan θ results in the undesirable feature that angles θ in the range
0◦ to 89◦ have the same prior probability as those in the range 89.98◦ to 89.99◦.

It should be realised that the results for Hypothesis Testing are more sensi-
tive to the choice of prior than in parameter determination. Thus in parameter
determination, sometimes a prior is used which is constant over a wide range of
µ, and zero outside it. The resulting range for the parameter, as deduced from
its posterior, may well be insensitive to the range used, provided it includes
the region where the likelihood L(µ) is significant. For comparing hypotheses,
however, there can be parameters which occur in one hypothesis but not the
other. (An example of this is where H1 corresponds to smooth background
plus a peak, while H0 is just smooth background.) The width of their priors
affects their normalisation, and hence affects the Bayes factor (see next Section)
directly. Bayesian statisticians admit that this is a problem.

8.3 Bayes factor

For each hypothesis we define Ri = ppost/π, where as usual ppost and π are
respectively the posterior and prior probabilities for hypothesis i. Thus R is
just the ratio of posterior and prior probabilities. Then the Bayes factor for the
two hypothesis H0 and H1 is B01 = R0/R1. If the two hypotheses are both
simple, then this is just the likelihood ratio. If either is composite, the relevant
integrals are required for ppost. A small value of B01 thus favours H1.

As already mentioned, the priors for these nuisance paramters can have a
strong effect on the Bayes factor. This has been investigated for a toy problem by
Heinrich[15], who found it was extremely difficult to find satisfactory functional
forms for the priors which produced reasonable behaviour for the result of the
hypothesis comparison.

Demortier[16] has drawn attention to the fact that it can be useful to cal-
culate the minimum Bayes factor[17]. This is defined as above, but with the
extra nuisance parameters of H1 set at values that minimise B01, i.e. they are
as favourable as possible for H1. If even this value of B01 suggests that H1 is
not to be preferred, then it is a waste of time to investigate further since any
choice of priors for the extra parameters cannot make B01 smaller.

8.4 BIC and AIC

These are variants of the Bayes factor approach, where the statistic on which a
decision is made is −Lmax + C, where Lmax is the likelihood maximised with
respect to the free parameters, and C = k log n for BIC (the Bayes Information
Criterion) and C = 2k for AIC (the Akaike Information Criterion). Here n is
the sample size and k is the number of free parameters. In either approach, the
hypothesis for which the statistic is smallest is selected. Thus they appear to
have the attractive feature of doing away with the need for priors. Although
this is true, priors are implicitly there, in that the motivation for the factors C
is based on specific choices for the priors.
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There is little or no experience of using these criteria in High Energy Physics.
Until serious study is made of their properties, their use is not recommended.

9 Comparison of different methods

9.1 χ2 and ∆χ2

A paradox that appears in different guises is as follows.
A fit with one free parameter p is being performed to a histogram of 100

bins. Under the usual asymptotic assumptions, we expect the weighted sum
of squared deviations S(p) to be such that S(p0), the value of S for the best
value p0 of the parameter, is distributed like χ2 for 99 degrees of freedom. This
implies that its expected value is 99 ± 14. Thus a value of S(p0) = 85 would
not be unusual. Now a colleague has a theory which predicts a value of pth, and
wants to know whether the data confirms this. We again calculate the weighted
sum of squares and find S(pth) = 110. There appear to be two possible answers.

The first relies on the fact that the probability of obtaining a value of 110 or
larger for S is better than 20%, and so we accept the value pth of the parameter.
The second approach uses the fact that to calculate the uncertainty on our
best fit estimate p0, we find how much we must change p in order for S(p)
to increase by 1 unit. Now S(pth) is 25 units above the minimum, and so in
the approximation that S(p) is parabolic near its minimum, pth is 5 standard
deviations away from our best estimate, and hence is totally unacceptable.

Ref. [18] explains that using the difference in χ2 values gives better discrim-
ination between the hypotheses. It can be used in the following situations:

• Different fits are being performed to a set of data, involving functional
forms like a straight line (H0) or a higher order polynomial such as a
cubic.

• A mass histogram is being compared with a smooth background (H0),
or with a smooth background plus a peak of specified shape, but whose
position, width and amplitude are regarded as fit parameters.

• Different fits are being performed to a set of data, involving functional
forms like a straight line of negative gradient (H0), or a decreasing expo-
nential.

In the first two examples, the fit with a larger number of parameters will be
such that its weighted sum of squares S1 will never be larger than S0, that for the
simpler hypothesis H0. However, if H0 is true, we do not expect the difference
∆S to be large. We need to quantify what constitutes a large difference, in
which case we would tend to accept the alternative hypothesis. In the first
example, this is easiest as asymptotically and with H0 being true, we expect
∆S to follow a χ2 distribution[19] with the number of degrees of freedom equal
to the number of extra free parameters (2 in this case). This is because this
example satisfies the necessary conditions: the hypotheses must be nested, and
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the parameters of the larger model must all be defined and away from their
physical boundaries under H0.

Even though the hypotheses are nested in the second example above, the
other conditions are not satisfied and ∆S thus does not follow a χ2 distribution.
This means that in order to interpret the value of ∆S for our data, we need to
determine its expected distribution for H0 ourselves (i.e. by simulation), which
is a big nuisance.

The two hypotheses in the third case involve the same number of parameters,
and are not nested. This is a more obvious example of where we need to calculate
the expected distribution of ∆S ourselves.

9.2 Why p is not equal to B

In the scientific literature there is sometimes discussion of why a Bayes’ factor
approach (essentially the likelihood ratio, provided there are no nuisance pa-
rameters) can give a very different numerical answer to a p-value calculation. A
reason some agreement might be expected is that they are both addressing the
question of whether there is evidence in the data for new physics.

In fact they measure very different things. Thus p0 simply measures the
consistency with the null hypothesis, without any regard to the degree of agree-
ment with the alternative, while the the likelihood ratio takes the alternative
into account. More specifically, p0 is the probability of obtaining data at least
as discrepant with the H0 expectation, assuming H0 is true. In contrast the
Bayesian odds give the relative (Bayesian) probabilities of H0 or H1 being true.
There is thus no reason to expect them to bear any particular relationship to
each other. This can be illustrated by contour plots of constant values of the
Bayes factor B01 on a p0 versus p1 plot (see fig. 2(d)). The figure is constructed
by assuming that the pdf ’s for the two hypotheses H0 and H1 are given by
Gaussian distributions of equal widths. Then at constant p0, it is seen that B01

can take a range of values, corresponding to the Gaussians having different sep-
arations. Thus with the Gaussian for H0 centred at zero and with unit width, a
measured value of 5.0 yields a p0-value of 3 ∗ 10−7, regardless of the position of
the H1 Gaussian. Such a small p-value is usually taken as sufficient to reject H0.
As the centre of the H1 Gaussian starts at µ1 = 0 (i.e. the two Gaussians at
this stage are identical) and steadily moves to larger values, p0 of course remains
constant, but B01 rises to unity when µ1 = 10 and from then on decreases to
arbitrary small values. At that stage, the data are more in agreement with H0

than with H1.
Simulations of repeated measurements would be incapable of enabling us

to decide which of the two types of approach is better. This is because we
should find that each method does indeed correctly estimate the quantity that
it is purporting to quantify. This statement is to some extent weakened by the
effects of data being discrete, approximate treatment of nuisance parameters,
the definition of the ensemble of experiments for p0 or the choice of Bayesian
priors.
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9.3 A real example involving p and B

An intriguing example of the way that p-values and Bayes factors can lead to
different conclusions is provided by the early data of the CLAS Collaboration,
looking for pentaquarks[20]. Their histogram of the mass values of nK+ combi-
nations in the reaction γD → n K+ p K− has a suggestive looking peak (see fig.
4). Their initial paper[20] states that the probability of this being a statistical
fluctuation of the background is equivalent to 5.3 ± 0.6 σ, and hence this is
strong confirmatory evidence for a pentaquark state.
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Figure 4: A histogram of the n K+ effective mass is plotted for the reaction
γ D → n p K+ K−. If a pentaquark decaying into a neutron and a K+ is
produced in these reactions, a narrow peak should appear in this histogram, but
if not the distribution should be smooth. The curve is an attempt to deduce this
smooth background. Does the histogram provide evidence for a new particle,
as opposed to there being a statistical fluctuation from the smooth background,
and/or an incorrectly estimated background?

With more data, this peak was not apparent[21]. The CLAS collaboration
then reanalysed their data using a Bayesian approach. Even for just the original
data sample of fig. 4 which had been claimed to yield strong evidence for a
pentaquark, they now concluded that their data was marginally in favour of the
hypothesis that there was only smooth background and no peak (as compared
with the alternative hypothesis of there being a ‘pentaquark’ state above a
smooth background).

These dramatically different conclusions for the frequentist and Bayesian
approaches for the data of fig. 4 are potentially very worrying. It is possible
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to argue (see, for example, Cousins’ comments[22]) with the specifics of the
calculated p-value and Bayes factor of references [20] and [21], and so the degree
of inconsistency may not actually be as strong as claimed. Also Heinrich has
pointed out that there are formidable problems in choosing Bayesian priors
which produce reasonable results[15]. Berger[23] has responded by pointing out
that frequentist methods often have poorly defined ensembles, which can affect
frequentist calculations. It is clear that in analyses of this kind, it is informative
to study the sensitivity of the conclusions to the type and details of the approach
used.

10 Including Systematics

Various ways of incorporating systematics in analyses have been discussed at
the relevant places throughout this note. Here we simply summarise some of
the main points for convenience.

Uncertainties in almost any parameter associated with an analysis usually
result in a reduction in the significance of any observed effect. Systematic effects
are likely to be most important in situations where the background is uncertain,
the expected signal gives rise to a wide enhancement rather than a narrow peak,
or there is a lot of data so that the statistical uncertainties are small.

In Bayesian methods, systematics are dealt with by assigning them priors,
and then integrating over the relevant variable. When the systematic is based
on another measurement, this is a relatively straightforward procedure, with the
prior being chosen to encapsulate the information from the subsidiary experi-
ment. However, in other cases, little or nothing is known about the systematic
effect, and then the choice of prior is much more problematic. (This situation
would also create problems for frequentists.) We have also remarked that in
choosing between two or more hypotheses, Bayesian methods are particularly
sensitive to the choice of prior for parameters which are not common to the
different hypotheses.

Methods for incorporating systematics in p-value calculations include:

• Conditioning: In cases where the problem has a certain structure, it may
be possible to condition on an ancillary variable, which contains no in-
formation about the parameter of interest. Thus if the background is
estimated in a subsidiary measurement, it may be possible to condition
on the sum of the numbers of counts in the main and the subsidiary exper-
iments, and then to use the binomial distribution to obtain the p-value.

• Plug-in value: The best estimate of the nuisance parameters is used to
calculate p, where the nuisance parameters are calculated assuming the
null hypothesis.

• Prior predictive value: The p-values are averaged over the nuisance pa-
rameters, weighted by their prior distributions. This is in the spirit of
the Cousins-Highland approach[24] for incorporating systematics in upper
limit calculations.
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• Posterior predictive value: This time, the posterior distributions of the
nuisance parameters are used for weighting.

• Supremum p-value: The largest p-value for any possible value of the nui-
sance parameter is used. This is likely to be useful only when the nuisance
parameter is forced to be within some range; or when there is only a finite
number of possible alternative theoretical interpretations.

• Confidence interval: A confidence region of size 1 − γ is used for the
nuisance parameter(s), and then the adjusted p-value is pmax + γ, where
pmax is the largest p-value as the nuisance parameters are varied over their
confidence region. Clearly if it is desired to establish a discovery from p-
values around 10−7 or smaller, then γ should be chosen at least an order
of magnitude below this.

The properties of these and other methods have been compared by Demortier
[25], while Cranmer [26] and Cousins et al[27] have discussed some of them in
the context of searches at the LHC, where the distributions in the tails of the
probability distributions for data can be very relevant.

10.1 Marginalise or maximise?

It is conventional in likelihood approaches to use profiling i.e. to maximise with
respect to nuisance parameters. On the other hand, Bayesian methods usually
calculate joint posteriors that include the nuisance parameters, and then inte-
grate (or ‘marginalise’) with respect to them. Given that with constant priors
the likelihood and the posterior are proportional to each other, it is interesting
to consider further the difference between profiling and marginalisation.

If the likelihood is a multi-dimensional, possibly correlated Gaussian, then
the two procedures for eliminating the nuisance parameters will lead to the
same result. However it is not difficult to think of multi-dimensional functions
for which the results can be different. In general, with a function that has
a narrow high peak and a lower broad enhancement, profiling will pick out
the narrow peak, while marginalisation may be dominated by the lower broad
enhancement.

11 Conclusions

Choosing between hypotheses is a non-trivial operation, especially in the pres-
ence of nuisance parameters (which are almost always there). In order to make
a convincing case for New Physics, it will almost always be insufficient to show
that the data are inconsistent with the SM. What is needed is to demonstrate
that some other scenario provides a (much) better explanation for the data.

A recurring feature is the need to incorporate nuisance parameters. This is
likely to be especially important in the early data-taking with new accelerators
and detectors. There are many ways in which this can be done.
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The profile likelihood ratio is commonly used, largely because it seems a nat-
ural extension of the likelihood ratio which, by the Neyman–Pearson theorem,
is optimal for simple hypotheses. For realistic particle physics applications, its
distributions for H0 and for H1 will need to be determined (almost always by
Monte Carlo simulation) in order to assess the significance of its observed value;
and this needs to performed for different values of the nuisance parameters.

Bayesian approaches in principle provide a natural setting for determining
which hypothesis we should believe, and it is not restricted to comparison of just
two hypotheses. However, there can be serious problems in choosing suitable
priors for the parameters, and this can create difficulties in interpreting the
result.

As usual frequentist approaches only answer questions such as how likely it
is to obtain data like ours or more extreme, using various hypotheses, and our
deductions about whether we have a discovery have to be based on this. In
searches which have several chances of discovering a new effect, we recommend
including a ‘look elsewhere’ factor in the quoted p-value. This should allow for
the effective number of opportunities for making a discovery in the performed
search.

It is important to decide in advance the details of the technique to be used
to assess the significance of any discovery. Using a variety of methods and then
selecting the one which gives the most desirable result invalidates any properties
of method.

I wish to acknowledge the patience and expertise of David Cox, Martin Crow-
der, Brad Efron and Steffen Lauritzen and also of other Statisticians too numer-
ous to list, in explaining statistical issues to me; the ones who have contributed
to the PHYSTAT meetings have been particularly helpful. Warm thanks are
due to Luc Demortier (who also helped produce the diagrams) and to Tom
Junk for very useful comments on this note. My understanding of the practi-
cal application of statistical techniques has improved considerably as a result
of discussions with many experimental Particle Physics colleagues; I especially
want to thank the members of the CDF Statistics Committee and Bob Cousins.
To all of you, I am most grateful.
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